Некоторые специфические положения, имеющие отношение к активности мембранных ферментов
Страница 1

Мембранная энзимология » Некоторые специфические положения, имеющие отношение к активности мембранных ферментов

Проблема изучения функционирования мембранных ферментов сводится по существу к проблеме гетерогенного катализа. Эти ферменты находятся не в непрерывной гомогенной среде, а локализованы в биомембране, мицелле, везикуле или иной мембранной системе. Мембранные ферменты весьма чувствительны к локальному окружению, которое, вообще говоря, может существенно отличаться от окружения в растворе. Более того, для осуществления каталитической реакции фермент и мембраносвязанный субстрат должны находиться в одной и той же мембране или. везикуле, поэтому при анализе кинетических свойств мембранных ферментов часто возникают проблемы, связанные с их пространственным разделением. Рассмотрим некоторые положения, касающиеся кинетических аспектов работы мембранных ферментов как in situ, так и в модельных системах.

1. Пространственное разделение фермента и субстрата. Фермент и субстрат должны иметь возможность взаимодействовать. Предположим, что мы изучаем очищенный интегральный мембранный фермент в растворе детергента с неполярным липофильным субстратом. И фермент, и субстрат солюбилизированы в детергентных мицеллах, но для того, чтобы мог осуществляться катализ, они должны находиться в одних и тех же мицеллах. При избытке детергента увеличивается вероятность того, что фермент и субстрат будут находиться в разных мицеллах, и лимитирующей стадией в этом случае станет диффузия субстрата в ферментно-детергентные мицеллы. При этом скорость работы фермента зависит от поверхностной концентрации субстрата в мицелле, а не от объемной концентрации. При работе с очень гидрофобными субстратами часто возникает другая проблема. Такие субстраты могут не до конца солюбилизироваться в мицеллах или мембранных везикулах, часть их коагулирует с образованием комков или микроскопических кристаллов, в которые фермент не проникает. Небольшое число ферментов может работать в вывернутых мицеллах, когда содержащие воду структуры диспергированы в органическом растворителе, но это скорее исключение, чем правило.

Иные проблемы при измерении активности мембранных ферментов возникают, когда либо фермент, либо субстрат находится как в мембраносвязанной, так и в растворенной формах. Примерами такого рода служат "поверхностные" ферменты - липазы или факторы свертывания крови. Для анализа кинетики таких систем необходимо знать соотношение между формами фермента в данных экспериментальных условиях и каталитические активности каждой из форм. Во всех этих случаях смысл величин максимальной скорости и константы Михаэлиса может быть совершенно иным, чем для ферментов, активность которых измеряется в гомогенной среде, что сильно осложняет интерпретацию этих параметров.

Гьстерезис и гетерогенность. Мембранные ферменты обладают и другими особенностями, затрудняющими интерпретацию кинетических данных. Эти особенности связаны с солюбилизацией. Каталитическая активность мембранных ферментов часто очень сильно зависит от используемого детергента или фосфолипида. Обычно активность мембранных ферментов измеряют в смеси, содержащей детергент и экзогенно добавленный фосфолипид. Кроме того, ферментный препарат нередко содержит соочищаемые с ним эндогенные липиды. В таких условиях физическое состояние фермента, в частности степень его агрегации, оказывается весьма неопределенным и скорее всего гетерогенным. Часто в одной и той же среде, компоненты которой смешивались в разной последовательности, получают совершенно разные ферментативные активности. Такая зависимость от предыстории препарата являет собой пример гистерезиса и весьма типична для мембранных ферментов. По существу фермент "застревает" в метастабильном состоянии и не может приобрести наиболее стабильную "рабочую конформацию". Например, простое смешивание солюбилизированного мембранного белка с фосфолипидными великулами скорее всего не приведет к встраиванию белка в липосомы. Для достижения успешной реконструкции разработаны специальные процедуры, позволяющие избежать перехода системы в нежелательное метастабильное состояние. В качестве примера фермента, образующего крупные агрегаты, можно привести бактопренолкиназу, очень гидрофобный белок из Staphylococcus aureus. Его активность не зависит от степени агрегации, что встречается далеко не всегда.

Страницы: 1 2 3


Интересное на сайте:

Род квакши — hyla laurenti, 1768
Наиболее многочисленный род семейства. Отечественные виды легко отличаются от всех других бесхвостых амфибий своими небольшими размерами (до 55 мм), изящной формой и дисками на пальцах. У них небольшая голова и овальное туловище, слегка ...

Интенсивность фотосинтеза на различных длинах волн
Первая стадия фотосинтеза протекает на свету. Световые кванты дают электронам энергию, необходимую для переноса их от хлорофилла или другого фотосинтезирующего пигмента. В ходе первой стадии из АДФ (аденозиндифосфата) и фосфата синтезируе ...

Космогоническая теория Канта – Лапласа
Исходная позиция Канта — несогласие с выводом Ньютона о необходимости божественного «первотолчка» для возникновения орбитального движения планет. По Канту, происхождение тангенциальной составляющей непонятно до тех пор, пока Солнечная сис ...