Эволюция звезд
Страница 1

Материалы » Черные дыры » Эволюция звезд

Звездные останки могут быть трех разновидностей: это белые карлики, нейтронные звезды и черные дыры.

Природа белых карликов как «мертвых» звезд стала достаточно ясна после пионерской работы С. Чандрасекара в начале 1930-х годов. Та термоядерная «печь», которая поддерживает структуру обычных звезд, не может быть причиной устойчивости внешних слоев в белых карликах просто потому, что в них уже исчерпано все горючее. Для понимания того, что же поддерживает структуру белого карлика, рассмотрим вещество в сердцевине коллапсирующей, умирающей звезды. По мере сжатия звезды давления и плотности становятся столь велики, что все атомы полностью «раздавливаются». В результате получается море свободных электронов, в котором как бы «плавают» ядра. Электроны обладают спином, или собственным «вращением», вследствие чего их поведение подчиняется важному закону природы, называемому в физике принципом запрета Паули. Согласно этому запрету, два электрона одновременно не могут занимать одно и то же место, если их скорости и спины одинаковы. По мере сжатия умирающей звезды электроны подвергаются давлению до такой степени, что в конце концов оказываются заполненными все вакансии возможного расположения и скоростей электронов. Как только это произошло, электроны начинают с большой силой действовать друг на друга, сопротивляясь дальнейшему сжатию умирающей звезды. Таким образом, возникает давление вырожденных электронов, предотвращающее неограниченное сжатие (коллапс) белого карлика.

Белые карлики известны астрономам уже на протяжении многих лет. Эти звезды настолько обычны, что до недавних пор все считали их конечным состоянием всех умирающих звезд.

Выполнив подробные расчеты структуры белых карликов, Чандрасекар пришел к интересному открытию: для массы белого карлика существует строгая верхняя граница. Давление вырожденных электронов способно поддерживать вещество мертвой звезды лишь в том случае, если ее масса не превышает примерно 1,25 массы Солнца. Если же масса умирающей звезды существенно больше 1,25 солнечной, то даже мощных сил между вырожденными электронами недостаточно для того, чтобы противостоять всесокрушающему давлению вышележащих слоев звезды. Этот критический предел массы - около 1,25 массы Солнца— называется пределом Чандрасекара.

Так как белые карлики весьма обычны и так как не было известно других типов «мертвых» звезд, то астрономы полагали, что все умирающие звезды ухитряются так или иначе сбросить достаточное количество вещества, чтобы их массы оказались в пределах массы Чандрасекара и дали нейтроны. Когда, наконец, вся звезда почти целиком превратится в нейтроны, снова начнет играть важную роль принцип запрета Паули. Силы между нейтронами вызовут появление давления вырожденных нейтронов. Это новое, еще более могучее давление способно остановить сжатие и ведет к появлению звездного тела нового типа - нейтронной звезды.

Еще через пять лет, в 1939 г., Ю.Р. Оппенгеймер и Г. Волков опубликовали обширные вычисления, доказывающие плодотворность этих соображений. Но так как никто никогда не наблюдал нейтронных звезд, эти пророческие идеи не нашли подходящей почвы. По сути дела астрономы просто не знали, где и как им искать нейтронные звезды.

В 1054 г. н. э. астрономы Древнего Китая отметили появление на небе «звезды-гостьи» в созвездии Тельца. Яркость этой новой звезды была столь велика, что ее можно было видеть без труда в солнечный день, Затем она стала ослабевать и вскоре совершенно пропала из виду.

Когда современные астрономы направили свои телескопы на то место неба, где, согласно древним записям, появилась «звезда-гостья», они обнаружили великолепную Крабовидную туманность. Крабовидная туманность является прекрасным примером остатка взрыва сверхновой, а древнекитайским астрономам настолько повезло, что они увидели умирающую звезду, когда она сбрасывала свою атмосферу.

В конце 1968 г. астрономов ждала новая радость: был обнаружен пульсар, расположенный точно посередине Крабовидной туманности. Этот пульсар, известный как NP 0532, - самый быстро пульсирующий из всех пульсаров. Импульсы радиоизлучения приходят от него по 30 раз за секунду. Это открытие дало астрономам повод для подозрений, что умирающие звезды могут иметь какое-то отношение к пульсарам. Непосредственные расчеты показали, что белые карлики не способны давать тридцать импульсов радиошума в секунду. Пришла пора воскресить идеи Бааде, Цвикки, Оппенгеймера и Волкова.

Все звезды вращаются и все они, вероятно, обладают магнитными полями. В обычных условиях оба этих свойства довольно несущественны. Например, Солнце делает один оборот вокруг своей оси примерно за месяц. Его магнитное поле к тому же довольно слабое. В среднем у Солнца магнитное поле имеет приблизительно такую же напряженность, как и у Земли. Однако если Солнце или подобная ему звезда станет сжиматься до размеров нейтронной звезды, то оба указанных свойства приобретут исключительно важное значение. Чтобы понять причины этого, представим себе фигуристку, делающую пируэт на льду. Это - прямое следствие фундаментального закона физики, известного как закон сохранения момента количества движения. Подобным же образом если большая звезда, размером с Солнце, сжимается до малого объема, то скорость ее вращения стремительно возрастает. Поэтому астрономы считают, что нейтронные звезды очень быстро вращаются, вероятно, быстрее, чем оборот за секунду.

Страницы: 1 2


Интересное на сайте:

Взаимодействия между мембранными и растворимыми ферментами
Биомембраны играют важную роль в функционировании целого ряда растворимых ферментов. После разрушения клетки многие ферменты можно обнаружить и в растворимой, и в мембранной фракциях. Отнесение некоего фермента к классу периферических мем ...

Надежная защита
Любопытная картина представляется взору, когда рассматриваешь строение кожи под микроскопом. Наружная часть кожи — надкожица, или эпидермис, — состоит из многих слоев клеток, хотя толщина ее и не превышает нескольких десятых долей миллиме ...

Уровни организации живого
В организации живого в основном различают молекулярный, клеточный, тканевой, органный, организменный, популяционный, видовой, биоценотический и глобальный (биосферный) уровни. На всех этих уровнях проявляются все свойства, характерные для ...