Первый экологический кризис – смена анаэробной атмосферы на аэробную
Страница 1

Материалы » Эволюция планеты Земля » Первый экологический кризис – смена анаэробной атмосферы на аэробную

Протерозойская и архейская эры, объединяемые в криптозой, или докембрий, долгое время оставались загадкой для науки. Древнейшие из известных минералов имеют возраст 4,2 млрд. лет (оценка возраста Земли в 4,5-4,6 млрд. лет основана на анализе вещества метеоритов и лунного грунта). Возраст же древнейших пород, в которых найден углерод заведомо органического происхождения (в углероде, принимавшем когда-либо участие в реакциях фотосинтеза, необратимо меняется соотношение изотопов 12C и 13C) составляет 3,8 млрд. лет. Формация Исуа в Гренландии, где были обнаружены эти углеродистые прослои, одновременно является вообще древнейшими на Земле осадочными породами. Таким образом, первые достоверные следы жизни появляются на Земле одновременно с первыми достоверными следами воды.

Еще недавно биологи уверено рисовали – исходя из общих соображений – такую картину. Самый длинный отрезок в истории Земли приходился на образование первых биологических систем из неорганической материи. Несколько меньшее время потребовалось на возникновение первых клеток, и лишь после этого начался все ускоряющийся процесс собственно биологической эволюции. Первыми живыми существами были гетеротрофные микроорганизмы, питавшиеся «первичным бульоном» – той органикой, что в избытке возникала в первичной атмосфере и океане в результате процессов, частично смоделированных Миллером. Затем уже возникли и автотрофы, синтезирующие органику из углекислого газа и воды, используя для этого энергию окислительных химических реакций (хемоавтотрофы) или солнечного света (фотоавтотрофы).

Реальные факты, однако, вынудили отказаться от этой умозрительной схемы. В числе прочего не нашли подтверждений и представления об исходной гетеротрофности живых существ; судя по всему, авто- и гетеротрофность возникли одновременно. Один из ведущих специалистов по микробным сообществам Г.А. Заварзин обращает внимание на то, что «первичный бульон» даже теоретически не мог быть источником пищи для «первичной жизни», так как является конечным, исчерпываемым ресурсом. Поскольку живые существа размножаются в геометрической прогрессии, потомство первых же гетеротрофов должно было бы сожрать весь этот «бульон» за совершенно ничтожное время; после этого все они, естественно, мрут от голода. Не меньшие неприятности, впрочем, ожидают и чисто автотрофную биосферу, которая в том же темпе свяжет весь углерод на планете в виде неразложимых высокомолекулярных соединений.

Первичность хемоавтотрофности – относительно фотоавтотрофности – тоже принято было считать несомненной; серьезным аргументом тут является то обстоятельство, что наиболее архаичные из всех покариот, архебактерии – именно автотрофы. Однако и здесь, как выяснилось, все не так уж очевидно. Молекула фотосинтезирующего пигмента (например, хлорофилла) поглощает квант света; в дальнейшем энергия этого кванта используется в различных химических превращениях. Так вот, есть серьезные основания полагать, что первичной функцией этих пигментов была просто-напросто нейтрализация разрушительной для организма (да и вообще для любой высокомолекулярной системы) энергии квантов ультрафиолетового излучения, беспрепятственно проникавшего в те времена сквозь лишенную озонового слоя атмосферу. Впоследствии те, кто приспособился еще и использовать эту энергию «в мирных целях», разумеется, получили гигантские преимущества, однако сама по себе «радиационная защита» ДНК при помощи пигментов должна была сформироваться еще на стадии доорганизменных гиперциклов. Понятно, что доводить эту защиту до совершенства имело смысл лишь тем из них, кто обитал в поверхностном слое океана (10-метровый слой воды полностью защищает от ультрафиолета любой интенсивности); именно они, судя по всему, и дали начало фотоавтотрофам, тогда как глубины остались в распоряжении хемоавтотрофов.

Первыми организмами были фотоавтотрофы: древнейшие организмы из формации Исуа были именно фотосинтезирующими, а в породах возраста 3,1 млрд. лет содержатся остатки хлорофилла - фитан и пристан, и даже неразложившийся цианобактериальный пигмент фикобилин), но гораздо проще отслеживать деятельность фотоавтотрофов по одному из ее побочных продуктов - кислороду. Кислород не может быть получен путем дегазации магмы, и потому отсутствовал в первичной атмосфере Земли, которая была восстановительной. Начало образования руд, состоящих из гематита Fe2O3 и магнетита FeO (Fe2O3) означает появление на Земле источника молекулярного кислорода – фотосинтезирующих организмов.

Источник кислорода возник, но атмосфера еще на протяжении полутора миллиардов лет оставалась анаэробной: об этом свидетельствует наличие в соответствующих отложениях конгломератов из пирита (FeS2). Сообщества фотоавтотрофов формируют в это время своеобразные кислородные оазисы в бескислородной пустыне; их возможностей хватает на создание окислительных обстановок (и осаждение железа в окисной форме) лишь в своем непосредственном окружении.

Страницы: 1 2 3 4


Интересное на сайте:

Поджелудочная железа
Поджелудочная железа (pancreas) – крупная железа серо-розового цвета, дольчатого строения, весит у взрослого 70 – 80 г и достигает в длину 20 см, а в ширину 4 см. Она лежит забрюшинно, располагаясь поперечно на уровне I поясничного позвон ...

Классификация нейронов
По количеству цитоплазматических отростков принято различать униполярные, биполярные и мультиполярные нейроны. Униполярные нейроны имеют единственный, обычно сильно разветвленный первичный отросток. Одна из его ветвей функционирует как ак ...

Селекция микроорганизмов
Микроорганизмы играют важную роль в жизни человека. Многие из них создают вещества, используемые в разных областях промышленности и в медицине. Такие Отрасли пищевой промышленности, как хлебопечение, производство спирта, некоторых органич ...