Регуляция температуры тела.
Страница 1

Материалы » Физиология терморегуляции » Регуляция температуры тела.

Периферические терморецепторы, образованные свободными окончаниями тонких сенсорных волокон типа А (дельта) и С, локализованы в коже и внутренних органах. Существуют и центральные, локализованные в гипоталамусе, терморецепторы.

Кожные терморецепторы реализуют передачу в центры терморегуляции сигналов об изменениях температуры среды, а также обеспечивают формирование температурных ощущений. Число холодовых рецепторов кожи во много раз превышает число тепловых рецепторов. Во внутренних органах и тканях также преобладают холодовые рецепторы.

В спинном и среднем мозге, а также в гипоталамусе (более всего в его медиальной преоптической области) найдены центральные терморецепторы, называемые также термосенсорами. Это нейроны, которые могут возбуждаться при их непосредственном охлаждении, нагревании на 0, 1оС или более и в результате изменять интенсивность как теплопродукции, так и теплоотдачи организма в целом. Например, при нагревании преоптической области гипоталамуса немедленно увеличивается потоотделение, расширяются сосуды кожи, при этом теплопродукция уменьшается. Учащение разрядов тепловых нейронов предшествует повышению частоты дыхания, при котором также растет теплоотдача. С задним гипоталамусом в свою очередь связаны термочувствительные структуры среднего и спинного мозга. Таким образом, центральные аппараты функциональной системы терморегуляции имеют большое число входных каналов.

Центр терморегуляции. Ведущую роль в терморегуляции играют структуры гипоталамуса, что было доказано методом перерезок мозга. Так, у кошки перерезка ростральнее гипоталамуса не приводит к существенным изменениям терморегуляции, но после нару­шения связей гипоталамуса со средним мозгом животные практически теряют способ­ность изменять теплопродукцию и теплоот­дачу при температурном раздражении.

Предполагается наличие в гипоталамусе трех видов терморегуляторных нейронов:

1) афферентных нейронов, принимающих сигналы от периферических и центральных терморецепторов;

2) вставочных, или интернейронов;

3) эфферентных нейронов, аксоны которых контролируют активность эффекторов системы терморегуляции.

От периферических терморецепторов информация поступает в передний гипоталамус — его медиальную преоптическую область. Здесь происходит сравнение полученных с периферии сигналов с активностью центральных термосенсоров, отражающих температурное состояние мозга.

На основе интеграции информации этих двух источников задний гипоталамус обеспечивает выработку сигналов, управляющих процессами теплопродукции и теплоотдачи. Именно здесь обнаружены нейроны, активность которых зависит от локального теплового раздражения как преоптической области гипоталамуса, так и нейронов шейно-грудно-го отдела спинного мозга.

Высшие структуры головного мозга, в частности новая кора, также принимают участие в терморегуляции. Доказана роль условнорефлекторного механизма в организации опережающих вегетативных и поведенческих реакций, направленных на поддержание оптимальной величины температурной константы организма по опережению. В развитии индивидуальной устойчивости к холоду важную роль может играть импринтинг — ранняя форма памяти.

Эфферентные пути терморегуляции. Система терморегуляции является классическим примером функциональной системы, поскольку не имеет подчеркнуто выраженного собственного исполнительного (эффекторного) компонента.

Регуляция теплопродукции осуществляется соматической нервной системой, запускающей сократительные терморегуляторные реакции, и симпатической нервной системой, активирующей несократительную теплопродукцию. При фармакологической блокаде бета-адрено-рецепторов участие недрожательного механизма теплопродукции исключается. Норадреналин, освобождаемый симпатическими нервными окончаниями, стимулирует выделение из бурой жировой ткани свободных жирных кислот и последующее включение их в метаболические реакции. Выделение катехоламинов из надпочечников вызывает те же эффекты. В результате усиливается рассогласование процессов окисления и фосфорилирования, повышается выделение первичного тепла.

Участие гуморальных механизмов терморегуляции особенно значительно при адаптации к повторным изменениям температуры среды. Роль щитовидной железы в адаптации к холоду человека точно не выяснена. У животных повышение секреции тироксина развивается при действии холода в течение нескольких недель, при этом на 20—40 % увеличивается масса железы. Повышение секреции тироксина приводит к активации клеточного метаболизма. Человек редко подвергается такому охлаждению. Однако в некоторых работах показано, что у солдат, несущих службу в арктических районах длительное время, а также у эскимосов наблюдается повышение основного обмена. Возможно, стимулирующее действие холода на щитовидную железу является одной из причин повышения частоты развития у жителей холодных районов токсического тиреоидного зоба.

Страницы: 1 2


Интересное на сайте:

Клеточное строение растений и животных
Первым человеком, увидевшим клетки, был английский учёный Роберт Гук (известный нам благодаря закону Гука). В 1663 году, пытаясь понять, почему пробковое дерево так хорошо плавает, Гук стал рассматривать тонкие срезы пробки с помощью усов ...

Интеграция информации отдельными нейронами в ЦНС пиявки
Со времен Древней Греции и Рима пиявки использовались врачами для лечения больных, страдающих такими заболеваниями, как эпилепсия, стенокардия, туберкулез, менингит и геморрой — довольно неприятное лечение, которое почти всегда приносило ...

Семейство круглоязычные — discoglossidae
Одно из наиболее архаичных семейств среди бесхвостых амфибий, существующее еще с юрского периода. Название происходит от округлой формы толстого языка, нижняя сторона которого почти полностью прирастает ко дну рта. Верхняя челюсть с зуба ...