Тепловой режим грунтов
Страница 1

Тепловой режим грунта формируется под действием двух основных факторов – падающей на поверхность солнечной радиации и потоком радиогенного тепла из земных недр. Сезонные и суточные изменения интенсивности солнечной радиации и температуры наружного воздуха вызывают колебания температуры верхних слоев грунта. Глубина проникновения суточных колебаний температуры наружного воздуха и интенсивности падающей солнечной радиации в зависимости от конкретных почвенно-климатических условий колеблется в пределах от нескольких десятков сантиметров до полутора метров. Поэтому температура грунта ниже 10 метров, как показано на рисунке остаётся стабильной на протяжении всего года. Глубина проникновения сезонных колебаний температуры наружного воздуха и интенсивности падающей солнечной радиации в грунт не превышает, как правило, 15–20 м.

Тепловой режим слоев грунта, расположенных ниже этой глубины («нейтральной зоны»), формируется под воздействием тепловой энергии, поступающей из недр Земли и практически не зависит от сезонных, а тем более суточных изменений параметров наружного климата на рис. выше. С увеличением глубины температура грунта также увеличивается в соответствии с геотермическим градиентом (примерно 3°С на каждые 100 м). Величина потока радиогенного тепла, поступающего из земных недр, для разных местностей различается. Как правило эта величина составляет 0,05–0,12 Вт/кв.м.

При эксплуатации геотермальных тепловых насосов грунтовый массив, находящийся в пределах зоны теплового влияния регистра труб грунтового теплообменника (системы теплосбора), вследствие сезонного изменения параметров наружного климата, а также под воздействием эксплуатационных нагрузок на геотермальный тепловой насос и систему теплосбора, как правило, подвергается многократному замораживанию и оттаиванию. При этом, естественно, происходит изменение агрегатного состояния влаги, заключенной в порах грунта и находящейся в общем случае, как в жидкой, так и в твердой и газообразной фазах одновременно. При этом в капилярно-пористых системах, каковой является грунтовый массив системы теплосбора геотермального теплового насоса, наличие влаги в поровом пространстве оказывает заметное влияние на процесс распространения тепла. Корректный учет этого влияния на сегодняшний день сопряжен со значительными трудностями, которые, прежде всего, связаны с отсутствием четких представлений о характере распределения твердой, жидкой и газообразной фаз влаги в той или иной структуре системы. При наличии в толще грунтового массива температурного градиента молекулы водяного пара перемещаются к местам, имеющим пониженный температурный потенциал, но в то же время под действием гравитационных сил возникает противоположно направленный поток влаги в жидкой фазе. Кроме этого, на температурный режим верхних слоев грунта оказывает влияние влага атмосферных осадков, а также грунтовые воды.

К характерным особенностям теплового режима систем сбора тепла грунта как объекта проектирования тепловых насосов грунт-вода также следует отнести и так называемую «информативную неопределенность» математических моделей, описывающих подобные процессы, или, иначе говоря, отсутствие достоверной информации о воздействиях на систему окружающей среды (атмосферы и массива грунта, находящихся вне зоны теплового влияния грунтового теплообменника системы теплосбора) и чрезвычайную сложность их аппроксимации. Действительно, если аппроксимация воздействий на систему наружного климата, хотя и сложна, но все же при определенных затратах «машинного времени» и использовании существующих моделей (например, «типового климатического года») может быть реализована, то проблема учета в модели влияния на геотермальний тепловой насос атмосферных воздействий (роса, туман, дождь, снег и т.д.), а также аппроксимация теплового влияния на грунтовый массив системы теплосбора подстилающих и окружающих его слоев грунта на сегодняшний день практически не разрешима и могла бы составить предмет отдельных исследований. Так, например, малая изученность процессов формирования фильтрационных потоков грунтовых вод, их скоростного режима, а также невозможность получения достоверной информации о тепловлажностном режиме слоев грунта, находящихся ниже зоны теплового влияния грунтового теплообменника геотермального теплового насоса, значительно осложняет задачу построения корректной математической модели теплового режима системы сбора низкопотенциального тепла грунта как источник тепла теплового насоса.

Страницы: 1 2


Интересное на сайте:

Закономерности вертикальной изменчивости гнездового населения птиц гор Азиатской Субарктики в пределах однородного ландшафта
В ГАС отличия в общей плотности населения птиц и обилии многих видов обнаруживаются при относительно небольшом смещении по вертикали в пределах однородного ландшафта любого из высотно-ландшафтных поясов (Кищинский, 1988; Романов, 1996). Р ...

Теория Ф. Жакоба и Ж- Моно о регуляции синтеза и-РНК и белков
Механизм регуляции генетического кода был открыт французскими учеными Ф. Жакобом и Ж. Моно в 1961 г. на бактериях. E. coli и получил название механизма индукции-репрессии. Было установлено, что синтез соответствующих белков – ферментов – ...

Палеоантроп (неандерталец)
О культуре палеоантропа мы имеем возможность судить по многочисленным мустьерским стоянкам. Мустьерская культура по отношению к предыдущей была более совершенной как по технике обработки и использованию орудий, так и по разнообразию их фо ...