Космические лучи
Страница 1

Развитие физики элементарных частиц тесно связало с изучением космического излучения — излучения, приходящего на Землю практически изотропно со всех направлений космического пространства. Измерения интенсивности космического излучения, проводимые методами, аналогичными методам регистрации радиоактивных излучений и частиц, приводят к выводу, что его интенсивность быстро растет с высотой, достигает максимума, затем уменьшается и с h=50 км остается практически постоянной.

По своему происхождению космические лучи можно разделить на несколько групп.

1) космические лучи галактического происхождения. Источником ГКЛ является наша Галактика, в которой происходит ускорение частиц до энергий ~1018 эВ.

2) космические лучи метагалактического происхождения, они имеют самые большие энергии, E>1018 эВ, образуются в других галактиках.

3) Солнечные космические лучи, генерируемые на Солнце во время солнечных вспышек.

4) Аномальные космические лучи, образующиеся в Солнечной системе на периферии гелиомагнитосферы.

Основными типами детекторов, которые используются при изучении космических лучей, являются фотоэмульсии и рентгеновские пленки, ионизационные камеры, газоразрядные счетчики, счетчики нейтронов, черенковские и сцинтилляционные счетчики, твердотельные полупроводниковые детекторы, искровые и дрейфовые камеры.

Различают первичное и вторичное космические излучения. Излучение, приходящее непосредственно из космоса, называют первичным космическим излучением. Исследование его состава показало, что первичное излучение представляет собой поток элементарных частиц высокой энергии, причем более 90% из них составляют протоны с энергией примерно 109 – 1013 эВ, около 7% α-частицы и лишь небольшая доля (около 1%) приходится на ядра более тяжелых элементов (Z>20). По современным представлениям, основанным на данных астрофизики и радиоастрономии, считается, что первичное космическое излучение имеет в основном галактическое происхождение. Считается, что ускорение частиц до столь высоких энергий может происходить при столкновении с движущимися межзвездными магнитными полями. При h=50 км интенсивность космического излучения постоянна; на этих высотах наблюдается лишь первичное излучение.

С приближением к Земле интенсивность космического излучения возрастает, что свидетельствует о появлении вторичного

космического излучения, которое образуется в результате взаимодействия первичного космического излучения с ядрами атомов земной атмосферы. Во вторичном космическом излучении встречаются практически все известные элементарные частицы. При h<20 км космическое излучение является вторичным; с уменьшением h его интенсивность понижается, поскольку вторичные частицы по мере продвижения к поверхности Земли испытывают поглощение.

В составе вторичного космического излучения можно выделить два компонента: мягкий (сильно поглощается свинцом) и жесткий (обладает в свинце большой проникающей способностью). Происхождение мягкого компонента объясняется следующим образом. В космическом пространстве всегда имеются γ-кванты с энергией E>2mec2, которые в поле атомных ядер превращаются в электронно-позитронные пары. Образовавшиеся таким образом электроны и позитроны, тормозясь, в свою очередь, создают, энергия которых еще достаточна для образования новых электронно-позитронных пар и т. д. до тех пор, пока энергия γ-квантов не будет меньше 2mec2. Отписанный процесс называется электронно-позитронно-фотоновым (или каскадным) ливнем. Хотя первичные частицы, приводящие к образованию этих ливней, и обладают огромными энергиями, но ливневые частицы являются "мягкими" - не проходят через большие толщи вещества. Таким образом, ливневые частицы — электроны, позитроны и γ-кванты – и представляют собой мягкий компонент вторичного космического излучения.

Каскады в атмосфере, вызываемые частицами больших энергий и занимающие обширные площади, получили название широких атмосферных ливней. Они были открыты французским физиком П. Оже и его сотрудниками в 1938 году. Высокоэнергичная космическая частица образует ливень с огромным числом вторичных частиц, так, например, частица с E=1016 эВ в результате взаимодействий с атомами воздуха вблизи поверхности Земли порождает примерно 10 млн. вторичных частиц, распределенных на большой площади.

Хотя поток высокоэнергичных космических лучей, падающих на границу земной атмосферы, крайне мал, широкие атмосферные ливни занимают значительные площади и могут быть зарегистрированы с высокой эффективностью. Для этой цели на поверхности земли размещаются детекторы частиц на площади в десятки квадратных километров, причем регистрируются только те события, в которых срабатывает сразу несколько детекторов.

Исследование космического излучения, с одной стороны, позволило на начальном этапе развития физики элементарных частиц получить основные экспериментальные данные, на которых базировалась эта область науки, а с другой — дало возможность и сейчас изучать процессы с частицами сверхвысоких энергий вплоть до 1021 эВ, которые еще не получены искусственным путем. С начала 50-х годов для исследования элементарных частиц стали применять ускорители (позволяют ускорить частицы до сотен гигаэлектрон-вольт), в связи с чем космическое

Страницы: 1 2


Интересное на сайте:

Терапевтические эффекты ганглиозидов
Ганглиозиды in vivo обладают уникальными свойствами: при введении в организм подкожно, внутримышечно или интраперитонеально они относительно длительное время сохраняются в кровяном русле, лишены токсичности, в небольших количествах проник ...

Морфологическая характеристика самца и самки енотовидной собаки в Белогорском районе
Для проведения морфологических исследований были добыты три самки и три самца енотовидной собаки, обитающие в Белогорском районе. Средняя масса самцов енотовидной собаки составляет 3,8 кг, а самок в среднем 3,4 кг. С тушек енотовидных с ...

Популяционная структура видов
Виду и популяциям свойственна структурированность. Вид, как правило, включает множество популяций. Изоляция между ними почти никогда не бывает абсолютной: между отдельными популяциями происходит обмен особями благодаря миграции. Степень и ...