Получение плазмид

Наиболее распространенным методом генной инженерии является метод получения рекомбинантных, то естьсодержащих чужеродный ген, плазмид.

Каждая бактерия помимо основной, не покидающей клетку молекулы ДНК (5-6 млн. пар нуклеотидов), может содержать несколько различных плазмид, которыми она обменивается с другими бактериями.

Плазмиды являются автономными генетическими элементами, реплицирующимися (то есть размножающимися) в бактериальной клетке не в то же время, что основная молекула ДНК. Хотя на долю плазмид приходится лишь небольшая часть клеточной ДНК, именно они несут такие жизненно важные для бактерии гены, как гены лекарственной устойчивости. Разные плазмиды содержат разные гены устойчивости к антибактериальным препаратам.

Плазмидные векторы, как правило, создают методом генной инженерии, так как природные (немодифицированные) плазмиды лишены ряда обязательных для «высококачественнного вектора» свойств:

- небольшого размера, так как эффективность переноса экзогенной ДНК в E.coli снижается при длине плазмиды более 15 тысяч пар нуклеотидов;

- наличие сайта рестрикции, в который осуществлена вставка;

- наличия одного или более селективных генетических мркеров для идентификации реципиентных клеток, несущих рекомбинантную ДНК.

Для получения рекомбинантной плазмиды ДНК одной из плазмид расщепляется выбранной рестриктазой. Ген, который нужно ввести в бактериальную клетку, расщепляют из ДНК хромосом человека с помощью рестриктазы, поэтому его «липкие» концы являются комплементарными нуклеотидным последовательностям на концах плазмид.

Ферментом лигазой «склеивают» оба куска ДНК в результате получается рекомбинантная кольцевая плазмида, которую вводят в бактерию E. coli. Все потомки этой бактерии (клоны) содержат в плазмидах чужеродный ген. Весь этот процесс называют клонированием.

Вводят плазмиды в соматические клетки с помощью химических реагентов, повышающих проницаемость клеточной оболочки. В частности, чтобы обеспечить проникновение в клетки плазмидной ДНК, их обрабатывают ледяным раствором кальция хлорида, затем выдерживают при 42°С в течение 1,5 минут. Эта обработка приводит к локальному разрушению клеточной стенки. Максимальная частота трансформации -10-3, то есть на каждую тысячу клеток приходится одна трансформированная. Частота трансформации не бывает 100%-й, затем используют схемы отбора, позволяющие идентифицировать трансформированные клетки [2].

В качестве маркеров плазмида может содержать гены, определяющие устойчивость бактерии к антибиотикам. Вставка чужеродного (донорного) гена в маркерный ген приводит к инактивации последнего. Это позволяет отличить трансформированные клетки, получившие векторную плазмиду (утратившие устойчивость к антибиотику), от клеток, получивших рекомбинантную молекулу (сохранивших устойчивость к одному, но утративших устойчивость к другому антибиотику). Этот прием называется инактивацией маркера вставки.

Для отбора трансформированных клеток, содержащих рекомбинантную ДНК (гибридную плазмиду), проводят тестирование на резистентность к определенным антибиотикам. Например, клетки, несущие гибридную плазмиду, устойчивы в ампициллину, но чувствительны к тетрациклину (в маркерный ген которого и внедрена донорная ДНК).

Процесс разделения геномной ДНК на клонируемые элементы и введения этих элементов в клетки-хозяева называется созданием геномной библиотеки (банка клонов, банка генов).

Все системы клонирования должны отвечать двум основным требованиям:

1) наличию нескольких сайтов для клонирования;

2) возможности достаточно простой идентификации клеток с рекомбинантными ДНК.

Для всех рутинных процедур молекулярного клонирования широко используется E.coli в качестве клетки-хозяина. Клетки, способные поглощать чужеродную ДНК, называются компетентными; компетентность E.coli повышают, используя специальные условия культивирования. Для получения больших количеств чужеродных белков с помощью рекомбинантных штаммов E.coli была сконструирована плазмида, содержащая сильный промотор, селективный маркерный ген и короткий участок с несколькими уникальными сайтами для рестрицирующих ферментов – полиленкер.

Эффективными методами трансформации E.coli плазмидами является электропорация (воздействие на клеточные мембраны электрическим током для увеличения их проницаемости). Для введения клонированных генов в соматические клетки также применяют микроинъекции и микроукалывания или слияние с клеткой нагруженных ДНК мембранных везикул (липосом).


Интересное на сайте:

Тип Инфузории
К типу Инфузории относят около 6000 видов простейших, органеллами движения которых служит большое количество ресничек. Для большинства инфузорий характерно присутствие двух ядер: крупного вегетативного - макронуклеуса - и более мелкого ге ...

Имитирующие обстоятельства редких насекомых
Мы привыкли считать, что заповедники – это огромные территории, где охраняются редкие экзотические животные. Но мало кому известно, что есть в нашей стране, да и во многих других странах микрозаповедники, где охраняют обычных насекомых. В ...

Выводы
∙ Распространение местных подпороговых потенциалов в нейронах, а также продвижение потенциала действия вдоль нервного волокна, зависит от электрических свойств цитоплазмы и мембраны клетки. ∙ При инъекции постоянного тока в ц ...